In [1]:
# Importing and data
import theano.tensor as T
import theano
import sys, os
sys.path.append("../")
# Importing GeMpy modules
import gempy as GeMpy
# Reloading (only for development purposes)
import importlib
importlib.reload(GeMpy)
# Usuful packages
import numpy as np
import pandas as pn
import matplotlib.pyplot as plt
# This was to choose the gpu
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
# Default options of printin
np.set_printoptions(precision = 6, linewidth= 130, suppress = True)
#%matplotlib inline
%matplotlib inline
# Setting the extent
geo_data = GeMpy.create_data([0,10,0,10,0,10], [50,50,50])
# =========================
# DATA GENERATION IN PYTHON
# =========================
# Layers coordinates
layer_1 = np.array([[0.5,4,7], [2,4,6.5], [4,4,7], [5,4,6]])#-np.array([5,5,4]))/8+0.5
layer_2 = np.array([[3,4,5], [6,4,4],[8,4,4], [7,4,3], [1,4,6]])
layers = np.asarray([layer_1,layer_2])
# Foliations coordinates
dip_pos_1 = np.array([7,4,7])#- np.array([5,5,4]))/8+0.5
dip_pos_2 = np.array([2.,4,4])
# Dips
dip_angle_1 = float(15)
dip_angle_2 = float(340)
dips_angles = np.asarray([dip_angle_1, dip_angle_2], dtype="float64")
# Azimuths
azimuths = np.asarray([90,90], dtype="float64")
# Polarity
polarity = np.asarray([1,1], dtype="float64")
# Setting foliations and interfaces values
GeMpy.set_interfaces(geo_data, pn.DataFrame(
data = {"X" :np.append(layer_1[:, 0],layer_2[:,0]),
"Y" :np.append(layer_1[:, 1],layer_2[:,1]),
"Z" :np.append(layer_1[:, 2],layer_2[:,2]),
"formation" : np.append(
np.tile("Layer 1", len(layer_1)),
np.tile("Layer 2", len(layer_2))),
"labels" : [r'${\bf{x}}_{\alpha \, 0}^1$',
r'${\bf{x}}_{\alpha \, 1}^1$',
r'${\bf{x}}_{\alpha \, 2}^1$',
r'${\bf{x}}_{\alpha \, 3}^1$',
r'${\bf{x}}_{\alpha \, 0}^2$',
r'${\bf{x}}_{\alpha \, 1}^2$',
r'${\bf{x}}_{\alpha \, 2}^2$',
r'${\bf{x}}_{\alpha \, 3}^2$',
r'${\bf{x}}_{\alpha \, 4}^2$'] }))
GeMpy.set_foliations(geo_data, pn.DataFrame(
data = {"X" :np.append(dip_pos_1[0],dip_pos_2[0]),
"Y" :np.append(dip_pos_1[ 1],dip_pos_2[1]),
"Z" :np.append(dip_pos_1[ 2],dip_pos_2[2]),
"azimuth" : azimuths,
"dip" : dips_angles,
"polarity" : polarity,
"formation" : ["Layer 1", "Layer 2"],
"labels" : [r'${\bf{x}}_{\beta \,{0}}$',
r'${\bf{x}}_{\beta \,{1}}$'] }))
layer_3 = np.array([[2,4,3], [8,4,2], [9,4,3]])
dip_pos_3 = np.array([1,4,1])
dip_angle_3 = float(80)
azimuth_3 = 90
polarity_3 = 1
GeMpy.set_interfaces(geo_data, pn.DataFrame(
data = {"X" :layer_3[:, 0],
"Y" :layer_3[:, 1],
"Z" :layer_3[:, 2],
"formation" : np.tile("Layer 3", len(layer_3)),
"labels" : [ r'${\bf{x}}_{\alpha \, 0}^3$',
r'${\bf{x}}_{\alpha \, 1}^3$',
r'${\bf{x}}_{\alpha \, 2}^3$'] }), append = True)
GeMpy.get_raw_data(geo_data,"interfaces")
GeMpy.set_foliations(geo_data, pn.DataFrame(data = {
"X" : dip_pos_3[0],
"Y" : dip_pos_3[1],
"Z" : dip_pos_3[2],
"azimuth" : azimuth_3,
"dip" : dip_angle_3,
"polarity" : polarity_3,
"formation" : [ 'Layer 3'],
"labels" : r'${\bf{x}}_{\beta \,{2}}$'}), append = True)
GeMpy.set_data_series(geo_data, {'younger': ('Layer 1', 'Layer 2'),
'older': 'Layer 3'}, order_series = ['younger', 'older'])
In [3]:
GeMpy.plot_data(geo_data, direction='y')
Out[3]:
In [4]:
GeMpy.visualize(geo_data)
In [5]:
# Select series to interpolate (if you do not want to interpolate all)
new_series = GeMpy.select_series(geo_data, ['younger'])
data_interp = GeMpy.set_interpolator(geo_data,
#verbose = 'potential_field_at_all'
)
In [12]:
geo_data.interfaces
Out[12]:
In [4]:
data_interp.interpolator.tg.final_block[0].eval()
Out[4]:
In [5]:
np.zeros((1,3))[-1,:]
Out[5]:
In [6]:
# This are the shared parameters and the compilation of the function. This will be hidden as well at some point
input_data_T = data_interp.interpolator.tg.input_parameters_list()
debugging = theano.function(input_data_T, data_interp.interpolator.tg.whole_block_model(),
on_unused_input='ignore',
allow_input_downcast=True, profile=True)
In [7]:
# This prepares the user data to the theano function
input_data_P = data_interp.interpolator.data_prep()
# Solution of theano
sol = debugging(input_data_P[0], input_data_P[1], input_data_P[2], input_data_P[3],input_data_P[4], input_data_P[5])
In [8]:
sol
Out[8]:
In [17]:
GeMpy.plot_section(geo_data, 32, block = sol[1,0,:], direction='y', plot_data = True)
Out[17]:
In [11]:
plt.contour?
In [16]:
GeMpy.plot_potential_field(geo_data, sol[1,1,:].reshape(50, 50, 50), 22)
In [13]:
# If you change the values here. Here changes the plot as well
geo_data.foliations.set_value(0, 'dip', 40)
Out[13]:
In [14]:
# You need to set the interpolator again
new_series = GeMpy.select_series(geo_data, ['younger'])
data_interp = GeMpy.set_interpolator(new_series, verbose= ['cov_function'])
In [15]:
# If you change it here is not necesary. Maybe some function in GeMpy with an attribute to choose would be good
data_interp.interpolator._data_scaled.foliations.set_value(0, 'dip', 40)
# In any case, data prep has to be called to convert the data to pure arrays. This function should be hidden I guess
input_data_P = data_interp.interpolator.data_prep()
In [16]:
sol = debugging(input_data_P[0], input_data_P[1], input_data_P[2], input_data_P[3],input_data_P[4], input_data_P[5])
In [22]:
GeMpy.plot_section(new_series, 13,block= sol, plot_data = True)
Out[22]:
In [13]:
data_interp = GeMpy.set_interpolator(geo_data, u_grade = 0)
# This are the shared parameters and the compilation of the function. This will be hidden as well at some point
input_data_T = data_interp.interpolator.tg.input_parameters_list()
# This prepares the user data to the theano function
input_data_P = data_interp.interpolator.data_prep()
In [14]:
# We create the op. Because is an op we cannot call it with python variables anymore. Thats why we have to make them shared
# Before
op2 = theano.OpFromGraph(input_data_T, [data_interp.interpolator.tg.whole_block_model()], on_unused_input='ignore')
In [15]:
import pymc3 as pm
theano.config.compute_test_value = 'ignore'
model = pm.Model()
with model:
# Stochastic value
foliation = pm.Normal('foliation', 40, sd=10)
# We convert a python variable to theano.shared
dips = theano.shared(input_data_P[1])
# We add the stochastic value to the correspondant array
dips = T.set_subtensor(dips[0], foliation)
geo_model = pm.Deterministic('GeMpy', op2(theano.shared(input_data_P[0]), dips,
theano.shared(input_data_P[2]), theano.shared(input_data_P[3]),
theano.shared(input_data_P[4]), theano.shared(input_data_P[5])))
trace = pm.sample(6)
In [16]:
trace.varnames, trace.get_values("GeMpy")
Out[16]:
In [22]:
for i in trace.get_values('GeMpy'):
GeMpy.plot_section(new_series, 13, block = i, plot_data = False)
plt.show()
In [24]:
import ipyvolume.pylab as p3
import ipyvolume.serialize
ipyvolume.serialize.performance = 1 # 1 for binary, 0 for JSON
#p3 = ipyvolume.pylab.figure(width=200,height=600)
In [56]:
lith0 = trace['GeMpy'][0] == 0
lith1 = trace['GeMpy'][0] == 1
lith2 = trace['GeMpy'][0] == 2
lith3 = trace['GeMpy'][0] == 3
p3.figure(width=800)
p3.scatter(geo_data.grid.grid[:,0][lith0],
geo_data.grid.grid[:,1][lith0],
geo_data.grid.grid[:,2][lith0], marker='box', color = 'blue' )
p3.scatter(geo_data.grid.grid[:,0][lith1],
geo_data.grid.grid[:,1][lith1],
geo_data.grid.grid[:,2][lith1], marker='box', color = 'yellow', size = 1 )
p3.scatter(geo_data.grid.grid[:,0][lith2],
geo_data.grid.grid[:,1][lith2],
geo_data.grid.grid[:,2][lith2], marker='box', color = 'green' )
p3.scatter(geo_data.grid.grid[:,0][lith3],
geo_data.grid.grid[:,1][lith3],
geo_data.grid.grid[:,2][lith3], marker='box', color = 'red' )
p3.show()
In [18]:
# Cholesky solution
L = np.linalg.cholesky(C)
U = sc.linalg.cholesky(C)
Y = sc.linalg.solve_triangular(L,b, lower=True)
x = sc.linalg.solve_triangular(L.conj().T, Y)
In [ ]:
import scipy as sc
Y = sc.linalg.solve_triangular?
In [ ]:
In [ ]:
debugging.profile.summary()
In [ ]:
In [ ]:
data_interp.interpolator.tg.dips_position_all.set_value(input_data_P[0])
data_interp.interpolator.tg.dip_angles_all.set_value(input_data_P[1])
data_interp.interpolator.tg.azimuth_all.set_value(input_data_P[2])
data_interp.interpolator.tg.polarity_all.set_value(input_data_P[3])
data_interp.interpolator.tg.ref_layer_points_all.set_value(input_data_P[4])
data_interp.interpolator.tg.rest_layer_points_all.set_value(input_data_P[5])
In [ ]:
In [ ]:
In [ ]: