Example 2: Implementing GeMpy into PyMC3

Generating data


In [1]:
# Importing and data
import theano.tensor as T
import theano
import sys, os
sys.path.append("../")

# Importing GeMpy modules
import gempy as GeMpy

# Reloading (only for development purposes)
import importlib
importlib.reload(GeMpy)

# Usuful packages
import numpy as np
import pandas as pn

import matplotlib.pyplot as plt

# This was to choose the gpu
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'

# Default options of printin
np.set_printoptions(precision = 6, linewidth= 130, suppress =  True)

#%matplotlib inline
%matplotlib inline



# Setting the extent
geo_data = GeMpy.create_data([0,10,0,10,0,10], [50,50,50])


# =========================
# DATA GENERATION IN PYTHON
# =========================
# Layers coordinates
layer_1 = np.array([[0.5,4,7], [2,4,6.5], [4,4,7], [5,4,6]])#-np.array([5,5,4]))/8+0.5
layer_2 = np.array([[3,4,5], [6,4,4],[8,4,4], [7,4,3], [1,4,6]])
layers = np.asarray([layer_1,layer_2])

# Foliations coordinates
dip_pos_1 = np.array([7,4,7])#- np.array([5,5,4]))/8+0.5
dip_pos_2 = np.array([2.,4,4])

# Dips
dip_angle_1 = float(15)
dip_angle_2 = float(340)
dips_angles = np.asarray([dip_angle_1, dip_angle_2], dtype="float64")

# Azimuths
azimuths = np.asarray([90,90], dtype="float64")

# Polarity
polarity = np.asarray([1,1], dtype="float64")

# Setting foliations and interfaces values
GeMpy.set_interfaces(geo_data, pn.DataFrame(
    data = {"X" :np.append(layer_1[:, 0],layer_2[:,0]),
            "Y" :np.append(layer_1[:, 1],layer_2[:,1]),
            "Z" :np.append(layer_1[:, 2],layer_2[:,2]),
            "formation" : np.append(
               np.tile("Layer 1", len(layer_1)), 
               np.tile("Layer 2", len(layer_2))),
            "labels" : [r'${\bf{x}}_{\alpha \, 0}^1$',
               r'${\bf{x}}_{\alpha \, 1}^1$',
               r'${\bf{x}}_{\alpha \, 2}^1$',
               r'${\bf{x}}_{\alpha \, 3}^1$',
               r'${\bf{x}}_{\alpha \, 0}^2$',
               r'${\bf{x}}_{\alpha \, 1}^2$',
               r'${\bf{x}}_{\alpha \, 2}^2$',
               r'${\bf{x}}_{\alpha \, 3}^2$',
        
                        r'${\bf{x}}_{\alpha \, 4}^2$'] }))

GeMpy.set_foliations(geo_data,  pn.DataFrame(
    data = {"X" :np.append(dip_pos_1[0],dip_pos_2[0]),
            "Y" :np.append(dip_pos_1[ 1],dip_pos_2[1]),
            "Z" :np.append(dip_pos_1[ 2],dip_pos_2[2]),
            "azimuth" : azimuths,
            "dip" : dips_angles,
            "polarity" : polarity,
            "formation" : ["Layer 1", "Layer 2"],
            "labels" : [r'${\bf{x}}_{\beta \,{0}}$',
              r'${\bf{x}}_{\beta \,{1}}$'] })) 



layer_3 = np.array([[2,4,3], [8,4,2], [9,4,3]])
dip_pos_3 = np.array([1,4,1])
dip_angle_3 = float(80)
azimuth_3 = 90
polarity_3 = 1



GeMpy.set_interfaces(geo_data, pn.DataFrame(
    data = {"X" :layer_3[:, 0],
            "Y" :layer_3[:, 1],
            "Z" :layer_3[:, 2],
            "formation" : np.tile("Layer 3", len(layer_3)), 
            "labels" : [  r'${\bf{x}}_{\alpha \, 0}^3$',
                           r'${\bf{x}}_{\alpha \, 1}^3$',
                           r'${\bf{x}}_{\alpha \, 2}^3$'] }), append = True)
GeMpy.get_raw_data(geo_data,"interfaces")


GeMpy.set_foliations(geo_data, pn.DataFrame(data = {
                     "X" : dip_pos_3[0],
                     "Y" : dip_pos_3[1],
                     "Z" : dip_pos_3[2],
            
                     "azimuth" : azimuth_3,
                     "dip" : dip_angle_3,
                     "polarity" : polarity_3,
                     "formation" : [ 'Layer 3'],
                     "labels" : r'${\bf{x}}_{\beta \,{2}}$'}), append = True)


GeMpy.set_data_series(geo_data, {'younger': ('Layer 1', 'Layer 2'),
                      'older': 'Layer 3'}, order_series = ['younger', 'older'])

In [3]:
GeMpy.plot_data(geo_data, direction='y')


Out[3]:
<gempy.Visualization.PlotData at 0x7f12289b0550>

In [4]:
GeMpy.visualize(geo_data)


<class 'gempy.visualization_vtk.InterfaceSphere'>
<class 'gempy.visualization_vtk.InterfaceSphere'>
<class 'gempy.visualization_vtk.InterfaceSphere'>
<class 'gempy.visualization_vtk.InterfaceSphere'>
<class 'gempy.visualization_vtk.InterfaceSphere'>
<class 'gempy.visualization_vtk.InterfaceSphere'>
<class 'gempy.visualization_vtk.InterfaceSphere'>
<class 'gempy.visualization_vtk.InterfaceSphere'>
<class 'gempy.visualization_vtk.InterfaceSphere'>
<class 'gempy.visualization_vtk.InterfaceSphere'>
<class 'gempy.visualization_vtk.InterfaceSphere'>
<class 'gempy.visualization_vtk.InterfaceSphere'>
<class 'gempy.visualization_vtk.InterfaceSphere'>
<class 'gempy.visualization_vtk.InterfaceSphere'>
<class 'gempy.visualization_vtk.InterfaceSphere'>
<class 'gempy.visualization_vtk.InterfaceSphere'>
<class 'gempy.visualization_vtk.InterfaceSphere'>
<class 'gempy.visualization_vtk.InterfaceSphere'>
<class 'gempy.visualization_vtk.InterfaceSphere'>
<class 'gempy.visualization_vtk.InterfaceSphere'>
<class 'gempy.visualization_vtk.InterfaceSphere'>
<class 'gempy.visualization_vtk.InterfaceSphere'>
<class 'gempy.visualization_vtk.InterfaceSphere'>
<class 'gempy.visualization_vtk.InterfaceSphere'>

In [5]:
# Select series to interpolate (if you do not want to interpolate all)
new_series = GeMpy.select_series(geo_data, ['younger'])
data_interp = GeMpy.set_interpolator(geo_data,
                                    #verbose = 'potential_field_at_all'
                                    )


I am in the setting
I am here
[2, 2]

In [12]:
geo_data.interfaces


Out[12]:
X Y Z formation labels order_series series
0 0.5 4.000000 7.000000 Layer 1 ${\bf{x}}_{\alpha \, 0}^1$ 1 younger
1 2.0 4.000000 6.500000 Layer 1 ${\bf{x}}_{\alpha \, 1}^1$ 1 younger
2 4.0 4.000000 7.000000 Layer 1 ${\bf{x}}_{\alpha \, 2}^1$ 1 younger
3 5.0 4.000000 6.000000 Layer 1 ${\bf{x}}_{\alpha \, 3}^1$ 1 younger
4 3.0 4.000000 5.000000 Layer 2 ${\bf{x}}_{\alpha \, 0}^2$ 1 younger
5 6.0 4.000000 4.000000 Layer 2 ${\bf{x}}_{\alpha \, 1}^2$ 1 younger
6 8.0 6.009619 2.302988 Layer 2 ${\bf{x}}_{\alpha \, 2}^2$ 1 younger
7 7.0 4.000000 3.000000 Layer 2 ${\bf{x}}_{\alpha \, 3}^2$ 1 younger
8 1.0 4.000000 6.000000 Layer 2 ${\bf{x}}_{\alpha \, 4}^2$ 1 younger
0 2.0 4.000000 3.000000 Layer 3 ${\bf{x}}_{\alpha \, 0}^3$ 2 older
1 8.0 4.000000 2.000000 Layer 3 ${\bf{x}}_{\alpha \, 1}^3$ 2 older
2 9.0 4.000000 3.000000 Layer 3 ${\bf{x}}_{\alpha \, 2}^3$ 2 older

In [4]:
data_interp.interpolator.tg.final_block[0].eval()


Out[4]:
array([ 0.,  0.,  0., ...,  0.,  0.,  0.])

In [5]:
np.zeros((1,3))[-1,:]


Out[5]:
array([ 0.,  0.,  0.])

In [6]:
# This are the shared parameters and the compilation of the function. This will be hidden as well at some point
input_data_T = data_interp.interpolator.tg.input_parameters_list()
debugging = theano.function(input_data_T, data_interp.interpolator.tg.whole_block_model(),
                            on_unused_input='ignore',
                            allow_input_downcast=True, profile=True)

In [7]:
# This prepares the user data to the theano function
input_data_P = data_interp.interpolator.data_prep() 

# Solution of theano
sol = debugging(input_data_P[0], input_data_P[1], input_data_P[2], input_data_P[3],input_data_P[4], input_data_P[5])


[3 0]

In [8]:
sol


Out[8]:
array([[[ 0.      ,  0.      ,  0.      , ...,  1.      ,  1.      ,  1.      ],
        [ 0.368047,  0.382449,  0.396848, ...,  1.180642,  1.19662 ,  1.212601]],

       [[ 0.      ,  0.      ,  0.      , ...,  1.      ,  1.      ,  1.      ],
        [-0.043672, -0.041708, -0.039591, ...,  1.180642,  1.19662 ,  1.212601]]])

In [17]:
GeMpy.plot_section(geo_data, 32,  block = sol[1,0,:], direction='y', plot_data = True)


Out[17]:
<Visualization.PlotData at 0x7fa9d6fb0630>

In [11]:
plt.contour?

In [16]:
GeMpy.plot_potential_field(geo_data, sol[1,1,:].reshape(50, 50, 50), 22)



In [13]:
# If you change the values here. Here changes the plot as well
geo_data.foliations.set_value(0, 'dip', 40)


Out[13]:
G_x G_y G_z X Y Z azimuth dip formation labels order_series polarity series
0 0.258819 1.584810e-17 0.965926 7.0 4.0 7.0 90.0 40.0 Layer 1 ${\bf{x}}_{\beta \,{0}}$ 1 1.0 younger
1 -0.342020 -2.094269e-17 0.939693 2.0 4.0 4.0 90.0 340.0 Layer 2 ${\bf{x}}_{\beta \,{1}}$ 1 1.0 younger
0 0.984808 6.030208e-17 0.173648 1.0 4.0 1.0 90.0 40.0 Layer 3 ${\bf{x}}_{\beta \,{2}}$ 2 1.0 older

In [14]:
# You need to set the interpolator again
new_series = GeMpy.select_series(geo_data, ['younger'])
data_interp = GeMpy.set_interpolator(new_series, verbose= ['cov_function'])

In [15]:
# If you change it here is not necesary. Maybe some function in GeMpy with an attribute to choose would be good
data_interp.interpolator._data_scaled.foliations.set_value(0, 'dip', 40)
# In any case, data prep has to be called to convert the data to pure arrays. This function should be hidden I guess
input_data_P = data_interp.interpolator.data_prep()

In [16]:
sol = debugging(input_data_P[0], input_data_P[1], input_data_P[2], input_data_P[3],input_data_P[4], input_data_P[5])

In [22]:
GeMpy.plot_section(new_series, 13,block= sol, plot_data = True)


Out[22]:
<Visualization.PlotData at 0x7fd1ef06eba8>

PyMC3


In [13]:
data_interp = GeMpy.set_interpolator(geo_data, u_grade = 0)

# This are the shared parameters and the compilation of the function. This will be hidden as well at some point
input_data_T = data_interp.interpolator.tg.input_parameters_list()
# This prepares the user data to the theano function
input_data_P = data_interp.interpolator.data_prep()

In [14]:
# We create the op. Because is an op we cannot call it with python variables anymore. Thats why we have to make them shared
# Before
op2 = theano.OpFromGraph(input_data_T, [data_interp.interpolator.tg.whole_block_model()], on_unused_input='ignore')

In [15]:
import pymc3 as pm
theano.config.compute_test_value = 'ignore'
model = pm.Model()
with model:
    # Stochastic value
    foliation = pm.Normal('foliation', 40, sd=10)
    
    # We convert a python variable to theano.shared
    dips = theano.shared(input_data_P[1])
    
    # We add the stochastic value to the correspondant array
    dips = T.set_subtensor(dips[0], foliation)

    geo_model = pm.Deterministic('GeMpy', op2(theano.shared(input_data_P[0]), dips, 
                                     theano.shared(input_data_P[2]), theano.shared(input_data_P[3]),
                                     theano.shared(input_data_P[4]), theano.shared(input_data_P[5])))

    trace = pm.sample(6)


Auto-assigning NUTS sampler...
Initializing NUTS using advi...
Average ELBO = -0.012037: 100%|██████████| 200000/200000 [00:07<00:00, 25793.75it/s] 
Finished [100%]: Average ELBO = -0.0012071
100%|██████████| 6/6 [00:00<00:00, 18.53it/s]

In [16]:
trace.varnames, trace.get_values("GeMpy")


Out[16]:
(['foliation', 'GeMpy'], array([[0, 0, 0, ..., 1, 1, 1],
        [0, 0, 0, ..., 1, 1, 1],
        [0, 0, 0, ..., 1, 1, 1],
        [0, 0, 0, ..., 1, 1, 1],
        [0, 0, 0, ..., 1, 1, 1],
        [0, 0, 0, ..., 1, 1, 1]]))

In [22]:
for i in trace.get_values('GeMpy'):
    GeMpy.plot_section(new_series, 13, block = i, plot_data = False)
    plt.show()



In [24]:
import ipyvolume.pylab as p3
import ipyvolume.serialize
ipyvolume.serialize.performance = 1 # 1 for binary, 0 for JSON
#p3 = ipyvolume.pylab.figure(width=200,height=600)

In [56]:
lith0 = trace['GeMpy'][0] == 0
lith1 = trace['GeMpy'][0] == 1
lith2 = trace['GeMpy'][0] == 2
lith3 = trace['GeMpy'][0] == 3
p3.figure(width=800)

p3.scatter(geo_data.grid.grid[:,0][lith0],
           geo_data.grid.grid[:,1][lith0],
           geo_data.grid.grid[:,2][lith0], marker='box', color = 'blue' )

p3.scatter(geo_data.grid.grid[:,0][lith1],
           geo_data.grid.grid[:,1][lith1],
           geo_data.grid.grid[:,2][lith1], marker='box', color = 'yellow', size = 1 )

p3.scatter(geo_data.grid.grid[:,0][lith2],
           geo_data.grid.grid[:,1][lith2],
           geo_data.grid.grid[:,2][lith2], marker='box', color = 'green' )

p3.scatter(geo_data.grid.grid[:,0][lith3],
           geo_data.grid.grid[:,1][lith3],
           geo_data.grid.grid[:,2][lith3], marker='box', color = 'red' )

p3.show()


Cholesky (Under development)


In [18]:
# Cholesky solution
L = np.linalg.cholesky(C)
U = sc.linalg.cholesky(C)
Y = sc.linalg.solve_triangular(L,b, lower=True)
x = sc.linalg.solve_triangular(L.conj().T, Y)


---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
<ipython-input-18-c22109665cca> in <module>()
      1 # Cholesky solution
----> 2 L = np.linalg.cholesky(C)
      3 U = sc.linalg.cholesky(C)
      4 Y = sc.linalg.solve_triangular(L,b, lower=True)
      5 x = sc.linalg.solve_triangular(L.conj().T, Y)

NameError: name 'C' is not defined

In [ ]:
import scipy as sc
Y = sc.linalg.solve_triangular?

In [ ]:


In [ ]:
debugging.profile.summary()

In [ ]:


In [ ]:
data_interp.interpolator.tg.dips_position_all.set_value(input_data_P[0])
data_interp.interpolator.tg.dip_angles_all.set_value(input_data_P[1])
data_interp.interpolator.tg.azimuth_all.set_value(input_data_P[2])
data_interp.interpolator.tg.polarity_all.set_value(input_data_P[3])
data_interp.interpolator.tg.ref_layer_points_all.set_value(input_data_P[4])
data_interp.interpolator.tg.rest_layer_points_all.set_value(input_data_P[5])

In [ ]:


In [ ]:


In [ ]: